58 research outputs found

    A rapid review of the background to source control

    Get PDF
    Background to researchThe start of the 21st Century witnessed a revolution in drainage practices with the implementation of sustainable drainage systems (SUDS). Prior to 2000, rainfall was managed by directing it away as quickly as possible in underground pipes. Increasing pressures such as watercourse pollution, stricter environmental laws, climate change and urbanisation called for a paradigm shift with Scotland leading the way for implementing SUDS. SUDS are designed to mimic natural drainage processes, managing rainfall in stages as it drains from a development. Collectively this process is called the stormwater treatment train. The first stage is source control, with stages two and three being site and regional controls respectively. Source control principally controls and treats polluted runoff at source (where the rain falls) and if designed and implemented correctly, protect watercourses and downstream SUDS through filtration, infiltration and storage. In Scotland, site and regional control SUDS have become business as usual, however uptake of the stormwater treatment train and the use of source control SUDS in practice is less routine than would be expected.Objectives of researchThe SUDS Working Party in Scotland is an interdisciplinary stakeholder platform to discuss issues relating to the SUDS agenda and promote their use. In 2009, a consultation paper on ‘Implementing the Water Environment and Water Services (Scotland) Act’ set out proposals to improve the sustainable management of Scotland’s water resources. The need for increased source control measures for the mitigation of diffuse pollution and climate change effects in urban areas was identified. To assist in this aspiration, the SUDS Working Party commissioned this study via CREW to identify opportunities and barriers to increasing the uptake of source control in Scotland. This report covers phase one of a three-phase study. It focuses on tracking the evolution of source control to gain an insight into enabling factors and obstacles for successful uptake of the systems. A literature review identified source control origins, the techniques available, and options for their application.Key findings and recommendationsIn the UK, research to validate the performance of source control measures began in the early 1990’s. This was enabled by stakeholder platforms such as the SUDS Working Party and the Scottish Universities SUDS Monitoring Group. By the mid-1990s, the SUDS concept was developed which included source control and outlined water quality, quantity and biodiversity / amenity benefits of the systems. By 2000, Scottish guidance was developed and by 2006 it became law to implement SUDS in all new developments. This was quickly followed by technical standards in 2007. SUDS for roads networks were addressed in 2010. Currently, many types of source control exist, most of which have been validated by research and are commonplace. The state of the art techniques such as rain gardens, green roofs and rainwater harvesting however, have had limited uptake in Scotland.It is evident that the enabling factors for the uptake of SUDS have been the result of top down drivers such as environmental initiatives and regulation. However, clarity surrounding the definition and application of source control as part of the stormwater treatment train is becoming a barrier to its uptake by practitioners. Extensive research provided a bottom up driver to validate effectiveness of the technologies for attenuating pollutants, mitigating flooding and creating habitats. Validation of emerging innovative techniques however, such as green roofs and rain gardens for different development types is limited in Scotland and this may prove to be a barrier in the future

    Source control SUDS strategic directions

    Get PDF
    Background to researchThe uptake or transition from traditional drainage to sustainable drainage (SUDS) in Scotland has happened in a relatively short timescale (less than fifteen years) with site and regional control drainage structures such as ponds and basins now considered ‘business as usual’. This rapid transition to SUDS has been facilitated by a stakeholder platform called the Sustainable Urban Drainage Scottish Working Party (SUDSWP) which has promoted their use since 1997. This has subsequently led to Scotland being regarded as a frontrunner in SUDS implementation in the UK. However the uptake of source control as part of a stormwater treatment train is less routine than expected. With the aforementioned in mind, this Phase Three Report seeks to answer the question ‘How can the national uptake of source control be encouraged and influenced by the SUDS Working Party and whether they should recast their remit’? Objectives of research Phase One of this research looked at the background to the evolution of source control in Scotland providing preliminary insight into the enabling factors and obstacles for uptake of the systems since inception in the mid 1990’s. Phase Two appraised source control delivery on a global scale providing insight to enabling factors out with Scotland and appraising current delivery in Scotland by responsible organisations. The transition pathway from traditional drainage to source control SUDS was mapped out to highlight what the key enabling (and disabling) factors were to realise the transition to date. This phase of the research, Phase Three defines the next steps including comment on optimal source control and further considerations and recommendations. This involved analysis and consolidation of the findings from Phases one and two, a workshop delivered to SUDSWP and two surveys delivered online and via telephone interviews with professionals involved in source control SUDS. These findings are used to define barriers and opportunities to inform the development of a strategy to support and encourage implementation of source control within SUDSWP remit.Key findings and recommendationsKey findings and recommendations for the SUDS Working Party are grouped according to transition management cluster activities:* Transition Arena: Strengthen links with internal members and external stakeholders who have a stake in source control SUDS and develop an integrated long-term vision.* Transition Agenda: Develop a shared strategic plan which considers aligning agendas with other infrastructure initiatives and enforcement / inspection policies to ensure cost effective, fit for purpose measures particularly in the areas of unit plot, local streets and regeneration areas.* Transition Experiments / case studies: Encourage research partnerships to validate techniques in the source control toolkit not yet applied in Scotland and showcase case studies.* Transition Monitoring / evaluation: undertake a baseline assessment to gauge source control uptake and performance, revise existing guidance and encourage capacity building programmes.<br/

    Source control SUDS delivery on a global scale and in Scotland including approach by responsible organisations and professional groups

    Get PDF
    Background to researchThe Sustainable Urban Drainage Scottish Working Party via CREW commissioned this work on the implementation of source control for SUDS in Scotland. The project is being carried out by researchers based at Abertay University Dundee involves three phases. These are presented in separate reports; this report covers phase 2 of that work. Source control sustainable urban drainage systems (SUDS) are an established technique in many parts of the world. Source control SUDS are a key component of what is termed the stormwater treatment train. Source controls manage the more frequent but smaller polluting rainfall events as close to the source as possible (where the rain falls). Site and regional control SUDS are larger downstream structures which manage the longer term rainfall events and provide additional treatment when required. One of the key advantages of managing the more frequent rainfall events at source is that downstream site and regional SUDS will have longer life spans resulting in overall cost efficiencies. Scotland is regarded as a frontrunner in the UK regarding implementation of SUDS with site and regional drainage structures now considered ‘business as usual’. However the uptake of source control is less routine than would be expected.Objectives of researchPhase one of this research looked at the background to the evolution of source control in Scotland to provide an insight into the enabling factors and obstacles for uptake of the systems since. Phase two(this report) appraises delivery of the systems in seven countries and case studies are developed to understand why source control was implemented and how it was achieved. The current delivery by responsible organisations and professional groups which encourage and influence the source control agenda in Scotland is also appraised. Using these findings, the transition pathway from traditional drainage to source control SUDS are reconstructed and mapped out to highlight the historical and current enabling (and disabling) factors to realise the transition to date. A transition framework is used to highlight the transition strengths developed by responsible organisations over the last two decades which had assisted in accelerating the transition.Key findings and recommendationsKey outcomes of this research include:* In Scotland the source control vision and agenda is fragmented due to different stakeholder drivers and funding mechanisms.* There are examples of the use of incentives in Scotland (i.e. legislative, regulatory, financial,social and environmental) to drive integrated agendas. However these have not been successfully showcased to provide the evidence base for encouraging replication and up-scaling of the methodologies and techniques.* There are limited frontier source control SUDS ‘niches’ to nurture innovative techniques such as raingardens – a learning by doing concept. A more focused research agenda to validate these systems as viable sustainable solutions for Scotland would assist in accelerating uptake.* Lack of sector engagement, particularly with the public is a disabling factor for uptake.A final observation from this phase of the study is that requests from various interested parties for CREW / SUDS Working Party to share outputs indicates the need for this research

    Rural sustainable drainage systems:a practical design and build guide for Scotland's farmers and landowners

    Get PDF
    Soil cultivation, manure / fertiliser applications and chemical spraying can all contribute to diffuse pollution from agricultural land. Rainfall runoff from farm roads, tracks, yards and dusty roofs are also potential sources of diffuse pollution. Whilst many changes in farming practice have dealt with these sources of pollution there still remains instances where small amounts escape from a farmyard into a nearby ditch or where sediment laden overland field flows make their way into a ditch or burn, river or natural wetland and finally the sea. This not only has cost implications for a farmer but these incidents across a catchment have a huge impact on our water environment. Rural Sustainable Drainage Systems (Rural SuDS) will reduce agricultural diffuse pollution impacts as they are physical barriers that treat rainfall runoff. They are low cost, above ground drainage structures that capture soil particles, organic matter, nutrients and pesticides before they enter our water environment. Rural SuDS for steadings prevent blockages in drains and ditches. They contribute to good environmental practice and farm assurance schemes. In fields they can be used for returning fertile soil back to farmland and will help your business become more resilient to the impacts of climate change. Trapping soils, organic matter and nutrients means that valuable assets can be reclaimed – recent studies indicate savings of £88 per hectare per year! This Design and Build guide can be used by farmers and land managers to reduce diffuse pollution

    A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration

    Full text link
    The construction of an electron--positron collider "Higgs factory" has been stalled for a decade, not because of feasibility but because of the cost of conventional radio-frequency (RF) acceleration. Plasma-wakefield acceleration promises to alleviate this problem via significant cost reduction based on its orders-of-magnitude higher accelerating gradients. However, plasma-based acceleration of positrons is much more difficult than for electrons. We propose a collider scheme that avoids positron acceleration in plasma, using a mixture of beam-driven plasma-wakefield acceleration to high energy for the electrons and conventional RF acceleration to low energy for the positrons. We emphasise the benefits of asymmetric energies, asymmetric bunch charges and asymmetric transverse emittances. The implications for luminosity and experimentation at such an asymmetric facility are explored and found to be comparable to conventional facilities; the cost is found to be much lower.Comment: 13 pages, 3 figures, 3 table

    Potential role of miR-9 and miR-223 in recurrent ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression by binding to target mRNAs. miRNAs have not been comprehensively studied in recurrent ovarian cancer, yet an incurable disease.</p> <p>Results</p> <p>Using real-time RT-PCR, we obtained distinct miRNA expression profiles between primary and recurrent serous papillary ovarian adenocarcinomas (n = 6) in a subset of samples previously used in a transcriptome approach. Expression levels of top dysregulated miRNA genes, miR-223 and miR-9, were examined using TaqMan PCR in independent cohorts of fresh frozen (n = 18) and FFPE serous ovarian tumours (n = 22). Concordance was observed on TaqMan analysis for miR-223 and miR-9 between the training cohort and the independent test cohorts. Target prediction analysis for the above miRNA "recurrent metastatic signature" identified genes previously validated in our transcriptome study. Common biological pathways well characterised in ovarian cancer were shared by miR-9 and miR-223 lists of predicted target genes. We provide strong evidence that miR-9 acts as a putative tumour suppressor gene in recurrent ovarian cancer. Components of the miRNA processing machinery, such as Dicer and Drosha are not responsible for miRNA deregulation in recurrent ovarian cancer, as deluded by TaqMan and immunohistochemistry.</p> <p>Conclusion</p> <p>We propose a miRNA model for the molecular pathogenesis of recurrent ovarian cancer. Some of the differentially deregulated miRNAs identified correlate with our previous transcriptome findings. Based on integrated transcriptome and miRNA analysis, miR-9 and miR-223 can be of potential importance as biomarkers in recurrent ovarian cancer.</p
    • …
    corecore